Projectile Motion Problems

- a. How long was the eraser in the air?
- b. How far apart were the two friends?
- c. What was the maximum height of the eraser?
- d. What were the components of the velocity at the top of its flight?

- 2. A kangaroo is jumping across a field in the outback. The kangaroo jumps with an initial horizontal velocity of 8 m/s and an initial vertical velocity of 5 m/s.a. What was the initial speed of the kangaroo?
 - b. How long was the kangaroo in the air?
 - c. What was the maximum height of the kangaroo?

Projectile Motion Problems

d. What was the horizontal distance of the kangaroo's jump?

3. Mary throws a ball to Suzy, who is standing 25 meters away. Suzy catches the ball from the same height at which it was thrown. If the ball was in the air for 4 seconds, calculate the following:

a. Horizontal velocity.

- b. Initial vertical velocity.
- c. Maximum height of the ball.
- d. What happens to the components of the velocity and the acceleration as the ball flies through the air?
- 4. Larry tosses a volleyball to his wife, Lise, who catches it at the same height from which it was tossed. The volleyball has an initial velocity of 15 m/s at an angle of 30° above the horizontal.a. What are the components of the initial velocity?
 - b. How many seconds does it take the volleyball to reach its maximum height?

NAME: ____

- c. How far apart are Lise and Larry?
- d. What was the acceleration of the volleyball after 1 second? Give the magnitude and direction.

- *5. An astronaut on the moon tosses a rock with an initial velocity of 3 m/s at an angle of 35° above the horizontal. The acceleration due to gravity on the moon is 1.7 m/s².
 a. What were the components of the initial velocity of the rock?
 - b. How long was the rock "in the air?"
 - c. What was the maximum height of the rock?
 - d. What was the horizontal distance traveled by the rock?

Answers:

1.	a) 1.07 s	b) 4.82 m	c) 1.44 m	d) $v_x = 4.5 \text{ m/s } \& v_y = 0 \text{ m/s}$
2.	a) v = 9.43 m/s	b) 1.0 s	c) 1.25 m	d) 8 m
З.	a) 6.25 m/s	b) 20 m/s up	c) 20 m	
	d) $v_x = constant = 6.25 m/s$ & a	acceleration = cons	tant = 10 m/s² dowl	n & v_y starts positive 20 m/s
	(up) decreases to 0 m/s at top and continues to decrease to -20 m/s (down) when finally caught			
4.	a) v _x = 13 m/s & v _y = 7.5 m/s	b) 0.75 s	c) 19.5 m	
	d) acceleration = gravity = -10 m/s ² so magnitude is 10 m/s ² and direction is down			
5.	a) $v_x = 2.46 \text{ m/s} \& v_y = 1.72 \text{ m/s}$	b) 2.02 s	c) 0.87 m	d) 4.97 m